Université de Yaoundé I

Faculté des Sciences

Département de Mathématiques

Filière: Physique I

TD1 MATH 151 ANNÉE ACADÉMIQUE 2024-2025.

NOMBRES COMPLEXES

EQUIPE PÉDAGOGIQUE: DR TENKEU, DR MANN, DR GUIDZAVAI, DR BITYE

1. Calculs dans C

Exercice 1. (1) Calculer: a) (3+5i) + (2i)(4-2i), b) (4-5i)(3+2i), d) $(-1+3i)^3$, d) $(\frac{5+6i}{4-3i})$.

- (2) Mettre sous la forme a+ib , $a,b\in\mathbb{R}$ les nombres complexes suivants:
 - a) $\frac{3+6i}{3-4i}$, b) $(\frac{1+i}{2-i})^2 + \frac{3+6i}{3-4i}$, c) $\frac{2+5i}{1-i}$.
- (3) Ecrire sous la forme z = a + ib les nombres complexes suivants:
 - a) z est un nombre complexe de module 2 et d'argument $\frac{\pi}{6}$. b) z est un nombre complexe de module 3 et d'argument $\frac{-\pi}{8}$.
- (4) Calculer le module et un argument de : a) $u = \frac{\sqrt{6} i\sqrt{2}}{2}$ et b) v = 1 i. En déduire le module et un argument de $w = \frac{u}{a}$.
- (5) Soit $z = re^{i\theta}$ un nombre complexe. Calculer $(z + \overline{z}).(z^2 + \overline{z}^2)....(z^n + \overline{z}^n)$ en fonction de r et θ .
- (6) Soit $z=x+iy,\,x,y\in\mathbb{R}.$ Déterminer la partie réelle et la partie imaginaire de a) $Z=\frac{z-2+4i}{z+1-2i}.$ b) $Z=\frac{2z-1}{z^2}.$
 - 2. Forme trigonométrique, forme exponentielle et formule de Moivre

Exercice 2. Déterminer le module et un argument de $z = (\frac{1+i\sqrt{3}}{\sqrt{3}+i})^2$. Puis sa forme trigonométrique et sa forme exponentielle.

Exercice 3. Mettre sur la forme exponentielle les nombres complexes: $\frac{1+\cos\theta+i\sin\theta}{1+\cos\theta-i\sin\theta}$, $\frac{-4}{1+i\sqrt{3}}$.

Exercice 4. Calculer algébriquement $\frac{\frac{1+i\sqrt{3}}{2}}{\frac{\sqrt{2}(1+i)}{2}}$, puis trigonométriquement. En déduire la valeur exacte de $\cos(\frac{\pi}{12})$ et $\sin(\frac{\pi}{12})$.

3. Linéarisation et polynômes trigonométriques

Exercice 5. (1) Linéariser l'expression $f(x) = \sin(3x)\cos^2(2x)$.

(2) Linéariser: $g(x) = \cos^4(x) + \sin^4(x)$, $k(x) = \cos^3(x)\sin^2(x)$, $h(x) = \cos^3(x)\sin^3(x)$.

Exercice 6. (1) Exprimer cos(4x) en fonction de cos(x).

- (2) Exprimer $\sin(5x)$ en fonction de $\sin(x)$.
- (3) Ecrire $\sin(3x)$ et $\sin(2x)$ en fonction de $\sin(x)$ et $\cos(x)$.
 - 4. Racines n^{iemes} d' un nombre complexe

Exercice 7. Calculer les racines carrées de : 1, i, 3+4i, 8-6i et 7+24i. 24-10i, 3-4i.

Exercice 8. Calculer les racines carrées de $\frac{1+i}{\sqrt{2}}$. En déduire les valeurs de $\cos(\frac{\pi}{8})$ et de $\sin(\frac{\pi}{8})$.

Exercice 9. Trouver les racines cubiques de 2-2i, et de 11+2i.

5. Equations de degrés 1, 2, 3, 4 dans $\mathbb C$

Exercice 10. (1) Résoudre dans \mathbb{C} les équations du second degré suivantes:

a)
$$z^2 + z + 1 = 0$$
, b) $z^2 - (1 + 2i)z + i - 1 = 0$, c) $z^2 - \sqrt{3}z - i = 0$. d) $z^2 - (3 + 4i)z - 1 = 0$.

Exercice 11. Résoudre dans \mathbb{C} :

a)
$$z^3 + 3z - 2i = 0$$
, b) $z^4 + 10z^2 + 169 = 0$, c) $z^4 + 2z^2 + 4 = 0$.

Exercice 12. (1) Déterminer les racines cubiques de 1.

- (2) On note $j = \frac{-1+i\sqrt{3}}{2}$. Exprimer toutes les racines cubiques de 1 en fonction de J.
- (3) Montrer que $1 + j + j^2 = 0$.

Exercice 13. Donner sous-forme polaire les solutions dans \mathbb{C} de $z^6 + (7-i)z^3 - 8 - 8i = 0$. (Ind: poser $u = z^3$ et calculer $(9+i)^2$).

Exercice 14. Résoudre dans \mathbb{R} les équations: 1) $\cos(x)^2 - \sin(x)^2 = \sin(3x)$ 2) $\cos^4(x) - \sin(x)^4 = 1$.

Exercice 15. (1) Résoudre l'équation (E): $z^3 + (1-3i)z^2 - (6-i)z + 10i = 0$ sachant qu' elle possède une solution réelle.

- (2) On suppose $0 \le \theta \le \pi$, résoudre (E'): $z^6 2z^3 \cos(\theta) + 1 = 0$.
- (3) Résoudre a) $(1+i\sqrt{3})z^4-1=0$. b) $27(z-1)^6+(z+1)^6=0$.

Exercice 16. Déterminer les racines carrées du nombre complexe $\Delta = -5 + 12i$, puis résoudre dans \mathbb{C} l'équation: (E): $iz^2 - iz - 3 - i = 0$. En déduire les solutions de l'équation (E'): $iz^4 - iz^2 - 3 - i = 0$.

Exercice 17. Soit l'équation (E): $z^3 + (1-i)z^2 + (4-i)z - 4I = 0$.

- (1) Vérifier que i est une solution de (E).
- (2) Trouver un polynôme P du second degré tel que $z^3 + (1-i)z^2 + (4-i)z 4i = (z-i)P(z)$.
- (3) Résoudre l'équation (E).

Exercice 18. Soit l'équation (E): $z^4 + 2z^3 + 2z^2 - 2z + 1$)0 ($z \in \mathbb{C}$).

- (1) Démontrer que si z_0 est solution de (E), alors $\overline{z_0}$ est solution de (E).
- (2) (a) Déterminer les nombres réels a, b tels que

$$(E) \Leftrightarrow z^{2}[(z-\frac{1}{z})^{2}+a(z-\frac{1}{z})+b].$$

(b) Résoudre dans \mathbb{C} l' équation $Z^2 + aZ + b = 0$, puis l' équation (E).